Battery Busbar Module (BBM) Portfolio

Function

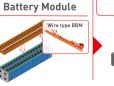
- Connect battery cells for modularization
- Detect the state of each individual battery cell to enable battery control


-Provide low height, integrated, compact, and lightweight BBM for batteries in electrification vehicles, whose capacities and densities are increasing

Wire Type Battery Busbar Module

Battery Pack

Feature


- Develop and produce BBM for various types of battery cells such as rectangular and cylinder
- The absorbing structure suppresses variation due to expanding / shrinking battery cells

Battery Cell

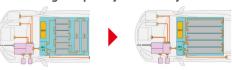
FPC Type Battery Busbar Module

Feature

- Reduce part numbers and weight Reduce 50% weight than conventional Yazaki products
- Ensure stable product quality by automatic production No wrong assembly and low failure risk due to printed technology
- Directly implement electronic parts to FPC

FPC Type Battery Busbar Module with Cell Votage Sensor

Feature


- Saving space and height reduction by integrated functions
- The best layout of fuses, thermistors and circuit areas
- Directly implement electronic parts

Long FPC Battery Busbar Module

 Various size of FPC can be produced with a same equipment in Roll to Roll process

Roll to Roll Process | Put FCCL*→Paste cover lay→Test

- Available large capacity of battery

BBM length: 1200 to 1800mm

yazaki

Flexible Wire

Developing

Background

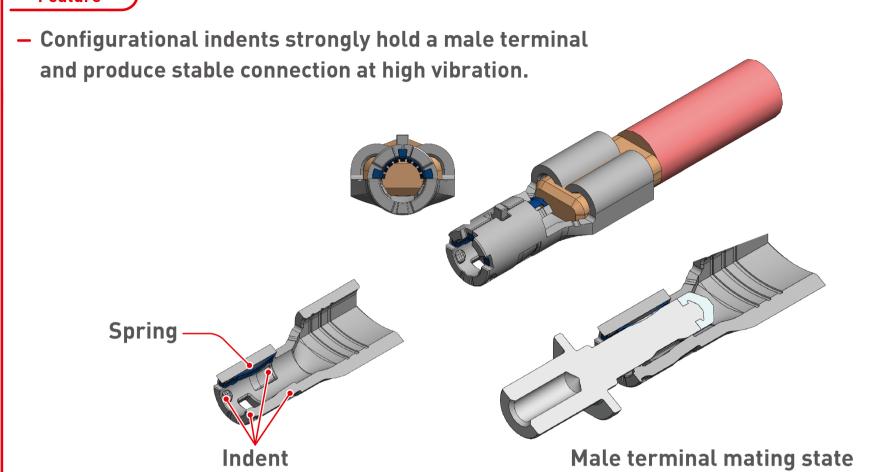
Wire size is getting bigger due to being higher voltage and larger current in electric vehicles.
 The mounting space for wire harness is being narrow.

Function

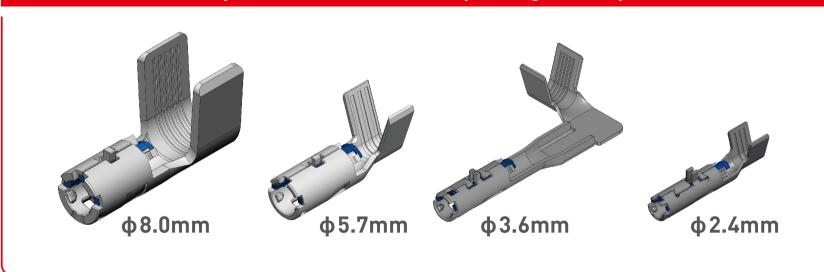
Flexible wires that can be routing for narrow space

Feature

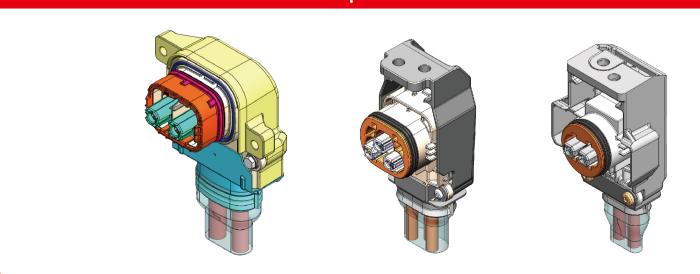
- Improve 60% flexibility by using flexible insulations
- It has a great environmental resistance and can be mounted anywhere.
- Same production methods as before


Performance/Specification

	Conductor				
Size	Cross- sectional area [mm²]	Outer diameter [mm]	Conductor resistance [mΩ/m] Max(20°C)	Insulation thickness [mm]	Finished outer diameter [mm]
30	29.03	7.8	0.647	1.3	10.4
40	39.73	9.1	0.473	1.4	11.9
50	50.43	10.1	0.368	1.5	13.1
70	70.29	12.0	0.259	1.5	15.0
95	96.27	14.0	0.196	1.6	17.2


Joint Terminal with Great Vibration Resistance

Mass-production


Feature

Variety of wire size is available by setting various pin size

Connector products with this terminal

High Voltage Semiconductor Junction Box

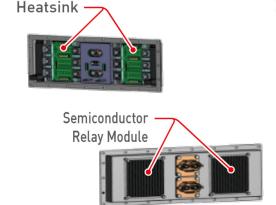
Developing

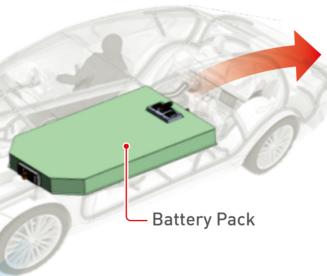
Background

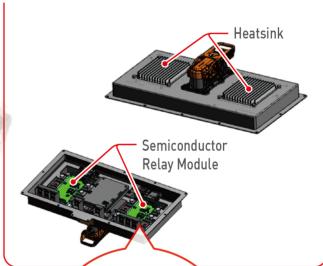
 It is necessary to develop products with high output charging specification to reduce charging time as one of the challenges for electric vehicles.

Function

- Supply/distribute high voltage power
- Change over series- parallel battery

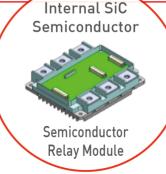

Feature


- Reduce charging time by changed over series- parallel battery
- Downsize with a semiconductor relay (Decrease in 50% volume of Yazaki's product)


Specification

- Voltage: Up to 800V
- Voltage of battery pack: Change over between 400V & 800V
- Current: Continuous 200A
- Implement semiconductor FUSE function
- Internal voltage/ current sensor

High Voltage Junction Box (Power supply / distribution)



High Voltage Junction Box

(Switching battery voltage)

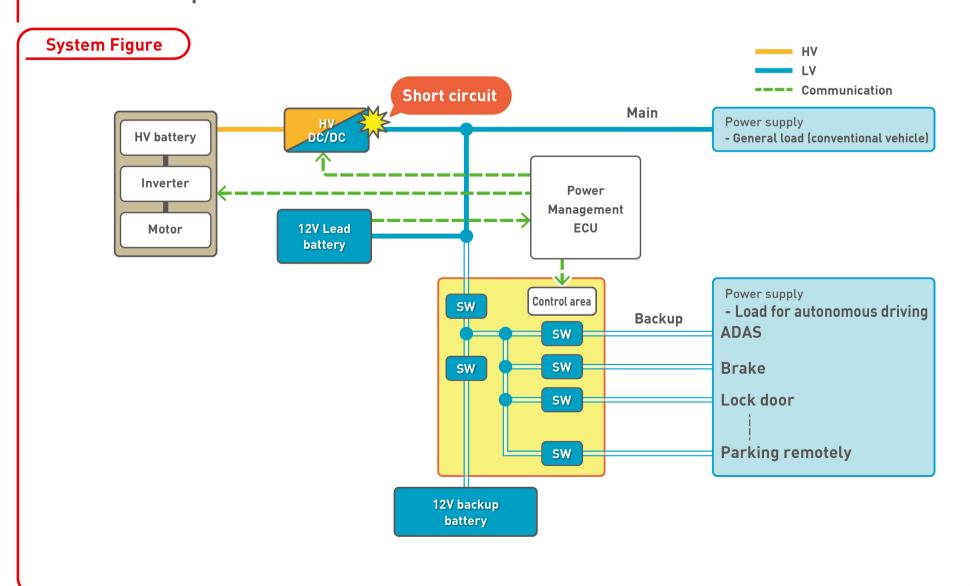
Power Switch Unit

Developing

Background

 Critical systems (load, ECU) directly linked to safety, comfort and convenience are getting increased and also it tends to increase dedicated batteries for each critical system.

Function


 Select critical systems and supply power to stop a vehicle according to a battery condition when the power is down or failed.

Feature

- Switch control algorithms contribute to reduce dedicated batteries for each critical system.
- Supply power for critical systems with interpolating 2 batteries. (main & 2nd)
- Critical systems can be added.

Performance/Specification

- Main Features
 - Detect failures
- Cutout routes
- Failed power
- Precedence control
- Overcurrent
- Fail safe
- Overtemperature

YAZAKI

Backup Battery Control Unit

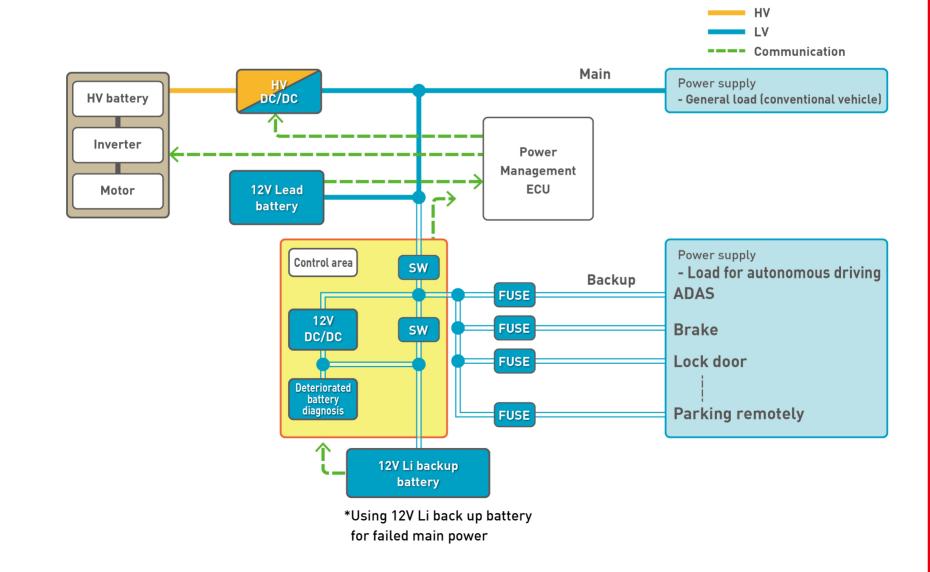
Developing

Background

 Stable power supply to a specific load is required for failed power in an advanced driving support system.

Function

Supply power safely to stop a car depending on the battery condition in case of power failed


Feature

- Self-contain from detecting failed power to backup
- Maintain and control battery charging state based on checking the deterioration

Performance/Specification

- Main Features
 - Detect failures
 - Failed main power
 - Overcurrent
 - Overtemperature
- Cutout routes
- Detect backup battery status & control charging

System Figure

LED Digital Meter

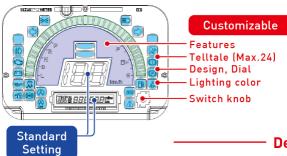
Mass-production

Background

Required low cost and short-term development
 To make low cost, simple and unique product

Function

 Speedometer that enables customizing features and design according to vehicle requirements


Feature

- Reasonable and highly visible LED digital display speedometer
- Customize from basic specification to satisfy vehicle requirement
- Features such as telltales, gauges, lighting color and etc.. are selectable

Performance/Specification

Basic Specification —
 Speedometer, Fuel indicator,
 ODO / TRIP shift display,
 Each telltale, Buzzer

Speedometer (3 digits)
ODO / TRIP (6 digits)

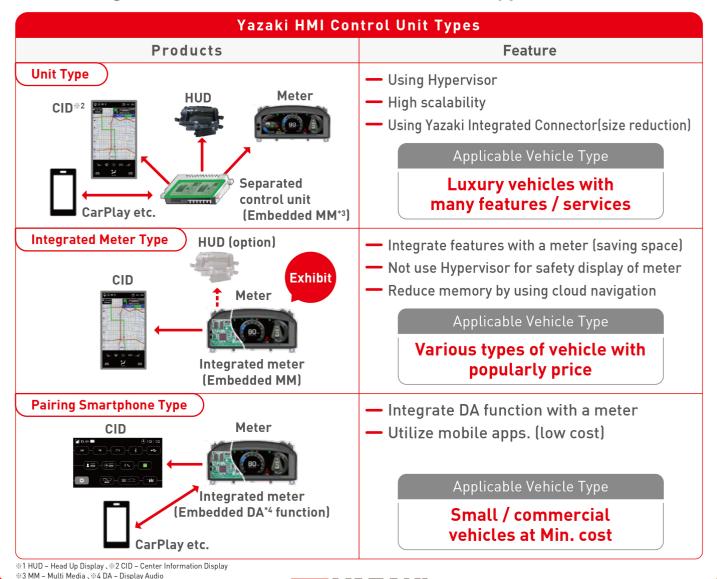
Minor changes of design or software realize various designs.

HMI Integrated Control Unit

(Exhibit: Integrated Meter Type)

Developing

Background


 E/E architecture changes and trends of feature integration in response priority software to provide the latest HMI to users at anytime.

Function

Integrate HMI devices, such as a meter, HUD*1,
 Center display etc. and showing various types.

Feature

 Various integrated control unit types allow users to select it matching features or costs for various vehicle types.

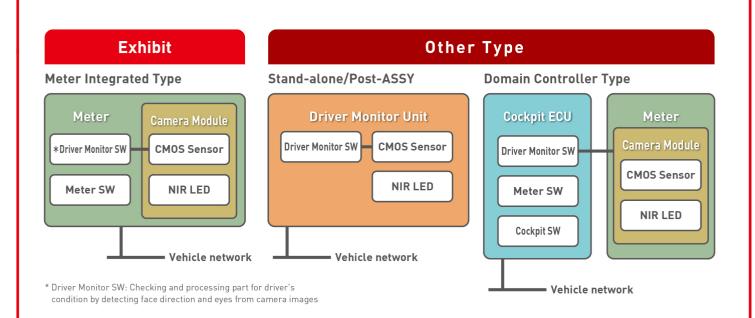
YAZAKI

Driver Monitoring System

Developing

Background

 Driver Monitoring System is required to detect driver state and let driver know the condition for safe driving.


Function

Driver Monitoring System can detect head pose and eye movement
 day and night to analyze driver state based on the camera built in the meter.

Feature

- Detecting driver's distraction, drowsiness, unusual driving and behaviors
- High designed meter with a built-in camera
- Compatible with various systems

Performance/Specification

Floating Display Meter

Developing

Background

 Regarding to increase vehicle information, provide suitable & clear information to drivers.

Function

 The meter realizes floating images by using general-purpose display & virtual image technology.

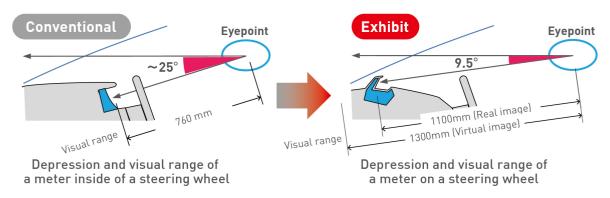
Feature

- Improve clear visibility with floating images
- Specific floating images naturally lead driver's eyes.
- Yazaki unique virtual image technology enables displaying real & virtual images to be linked.

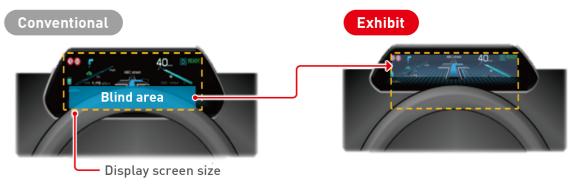
Far-sighted Meter

Developing

Background


- Increasing mounted graphic meter and diversifying the mounting position
- Required more visibility improvements according to increasing autonomous driving and advanced safety functions

Function


 12.3 inch display is positioned at a distance and the meter has the technology for turning back the display area hidden by steering wheel with a mirror to make a virtual image.

Feature

 Minimize line of sight movement by positioning the meter on the steering wheel and improve the visibility by displaying virtual image at a distance

1 display realizes 2 layers

Display area hidden by a steering wheel is shown as a virtual image in the effective area.

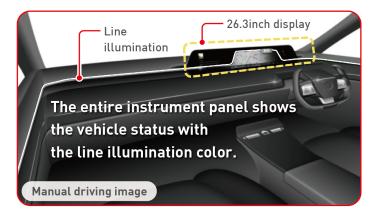
Large Display Meter

Developing

Background

 Meter displays have become larger and more than one, display contents are also required to be variety.

Function


 The meter improves passenger's experience and the value through flexible multi-display according to the scene and optimized display according to priority.


Feature

Optimized display according to scenes, priority and emergency

Intuitively provide information with the entire instrument panel

Link between display contents line illumination

