Automotive Thin Insulation Wire for High-voltage Circuits

Under development Scheduled to be

Scheduled to be installed in 2027

Thin insulation high-voltage wires that contribute to reducing size and weight of wire harnesses and carbon neutrality

Background or assignment

- With a shift towards EVs and electrification, an increase in demand for high-voltage wires and larger diameters are expected
- YAZAKI has started the development of high-voltage wires with thin insulation as means to contribute to lower fuel and electricity consumption

Solutions to Challenges

- Wire harness weight reduction by using thinner insulation and sheaths
- Reduction of CO₂ emissions and improvement of fuel efficiency
- 2 International standard, ISO 19642 compliance 🕨 Global
 - Global expansion
- Adoption of flexible conductors
- Improving wire routability in vehicles

Specifications

Conductor	Material - Copper/Aluminum	Structure - Flexible
Insulator	Material - Crosslinked Polyolefin	Structure - Thin insulation
Heat resistant class	Class D (-40°C to 150°C)	
Rated voltage	a.c 1,000V, d.c 1,500V	
Size	95sq or less	

Standards

ISO 19642-5	2019 - Single core copper conductor wire
ISO 19642-6	2019 – Single core aluminum conductor wire
ISO 19642-9	2019 – Single core copper conductor shielded wire
ISO 19642-10	2019 – Single core aluminum conductor shielded wire

Product image

