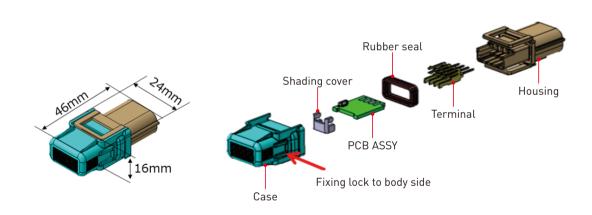
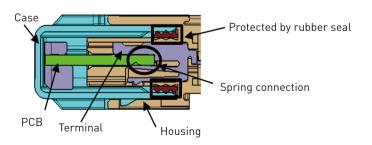
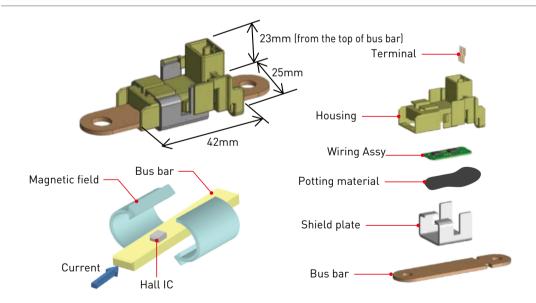

Inform measurements of current, voltage and temperature of high voltage battery to upper stream electronic unit by communication

- Measurement of current, voltage and temperature is required for high voltage line (battery pack) protection and battery management in EV
- Measure current for BMU battery management
- Measure voltage to detect troubles in high voltage power contactor, such as welding
- Measure temperature for protecting the unit body and external peripheral parts


Power Voltage	5V±0.25 (6V to 16V)
Usage Temperature	-40 to 85 degC
Output System	Digital communication UART (Support CAN)
Shunt Resistance Temperature	Output
BMU External Temperature	Output (1ch)
Current Detective Range	±5000A

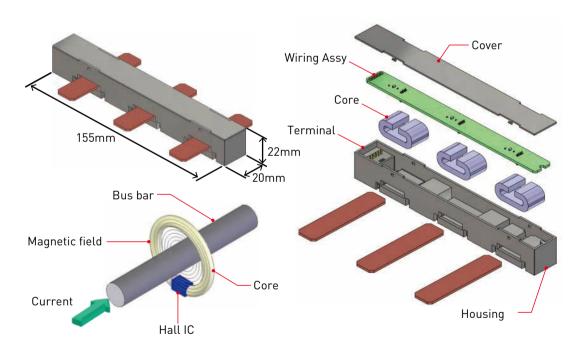

Countinous Flowing Current	400A
Current Measuring Accuracy	\pm 0.05A (offset error)
	\pm 0. 5% (gain error)
Voltage Detective Range	1000V
Voltage Measuring Accuracy	±1%
Voltage Measuring ch	2ch

- Lighting a charging port for night charging/feeding
- Notify charging status by LED lighting
- BEV/PHEV will grow from 2030
 Offer products to meet increasing needs for lights and indicators for night charging/feeding at home
- Only circuit change enables current ON/OFF and turning light ON/OFF by communication control
- Sealed function equivalent to sealed connector (98kPa or more)
- The compact unit enables to be installed even in places without spaces for inlet



Calculate BEV/HEV battery current

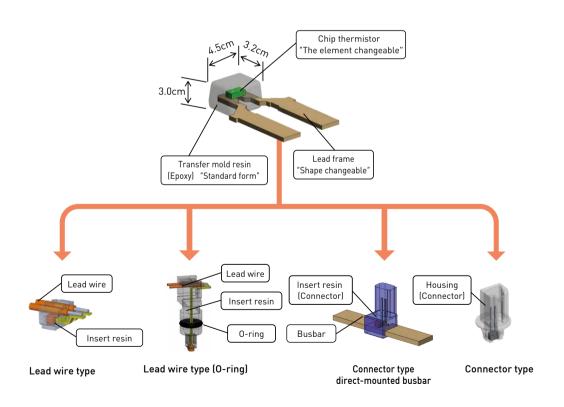
- Improve vehicle mountability by producing compact sensors necessary for determining the remaining BEV/HEV battery life and controlling the amount of charge/discharge
- Improve vehicle mountability
 - Reduce the size and weight by eliminating core
 - Improve ASSY by built-in busbar
- Additional features
 - Set current ranges for 2 outputs type
 - Failure diagnosis


Supply voltage	5.0V±0.5V
Usage temperature	-40 to 85degC
Current detective range	2 outputs (1) \pm 80A to \pm 200A
	(2) ± 250 A to ± 600 A
Output system	Analog (ratiometric output)

Output accuracy	±2A (offset)
	±2% (gain)
Reaction speed	Max. 100 μs
Detective system	Detect magnetic flux density by Hall IC
Current consumption	Up to 26mA

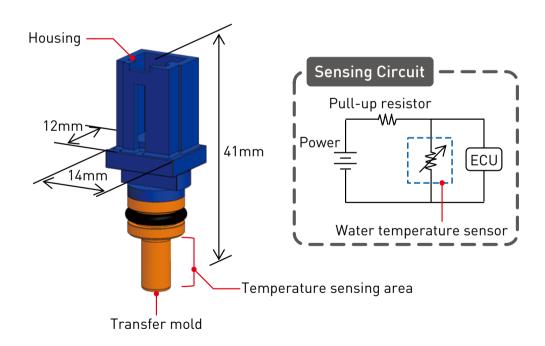
Detect three-phase alternating current from a motor and control it to be proper value by controlled circuit

- Develop a current sensor to detect three-phase alternating current for BEV/HEV motor
- Voltage output proportional measuring current
- Current detective range can be customized by using Hall IC with EEPROM
- Compact design for current measurement range



Supply voltage	5.0V±0.5V
Usage temperature	-40 to 125degC
Current detective range	±1000A (3 output)
Output accuracy	Up to ±4.5A (offset)
	Up to ±2% (gain)

Output system	Analog (ratiometric output)
Reaction speed	Max. 6µs
Detective system	Detect magnetic flux density by Hall IC
Current consumption	Up to 42mA



- Sensing temperature of cooling water and oil in automotive various systems
- Sensing temperature of busbar and battery pack etc
- Temperature sensor to be various forms with using chip thermistor instead of leaded glass thermistor (Transfer mold)
- High reliable transfer mold form
- Fast reaction
- High dimensional accuracy and flexible mounting (Pull out lead wires and changeable connector type)

Low cost and fast reaction by using transfer mold for the temperature sensing area

- EV thermal management is necessary to control the temperature of various systems, including e-Axle, and is essential for sensors of cooling water temperature
- Fast reaction
- High reliability and durability
- Cost reduction by commoditized the temperature sensing area

Sensing system	NTC Chip Thermistor
Sensing target	LLC (Long Life Coolant)
Supply voltage	DC 5 V
Usage temperature	-40 to 90degC

Temperature property	Customize
Reaction performance	≦ 5 sec.(Stirred water)
Standard Temperature Property	R25 = 10 kΩ ± 1 %
	B constant: B(25/85) = 3,960K ±1%

Flexible wires that can be routing for narrow space

- Wire size is getting bigger due to being higher voltage and larger current in electric vehicles
 The mounting space for wire harness is being narrow
- Improve 60% flexibility by using flexible insulations
- It has a great environmental resistance and can be mounted anywhere
- Same production methods as before

	Conductor				
Size	Cross- sectional area [mm²]	Outer diameter [mm]	Conductor resistance [mΩ/m] Max(20°C)	Insulation thickness [mm]	Finiched outer diameter [mm]
30	29.03	7.8	0.647	1.3	10.4
40	39.73	9.1	0.473	1.4	11.9
50	50.43	10.1	0.368	1.5	13.1
70	70.29	12.0	0.259	1.5	15.0
95	96.27	14.0	0.196	1.6	17.2

High flexibility allows routing of vehicle layout in saving space

- Busbar can be installed on various layouts
- Routable conductors are required in compact installing space of battery pack with expanding battery capacities
- Shorter routing materials: Use busbar instead of wires
- End-To-End manufacturing from hoop materials to products
- Connect flexible wires to edge of busbar

Busbar routing materials (1) Forming bus bar

aluminum coverings

- Use covering busbar utilized wire technology and end-to-end manufacturing from hoop materials to products
 - → Reduce tooling, safe and secure (Same as wire management)

Busbar routing materials (2) High flexible and low wire (Busbar with absorbing dimensional tolerance)

- Connect flexible wires to the edge part and absorb dimensional tolerance and stress
- → Apply to long wiring routes

Connect battery cells and modularize the battery

- Detect the state of each individual battery cell to enable battery control
- Provide low height, integrated, compact, and lightweight BBM for batteries in electrification vehicles, whose capacities and densities are increasing

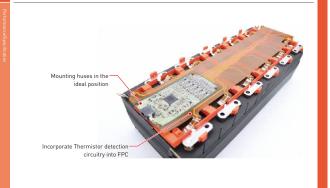
Mass-production

Wire Type Battery Busbar Module

- Develop and produce BBM for various types of battery cells such as rectangular and cylinder
- Hinge structure absorbs variation due to expansion/ shrink of battery cells

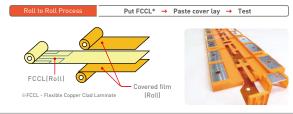
Mass-production

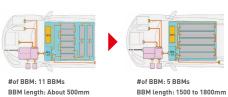
FPC Type Battery Busbar Module


- Reduce part numbers and weight Reduce 50% weight than conventional Yazaki products
- Ensure stable product quality by automatic production
 No wrong assembly and low failure risk due to printed technology
- Directly implement electronic parts to FPC

Developing

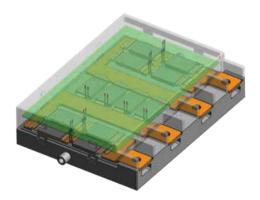
FPC Type Battery Busbar Module with Cell Votage Sensor


- Saving space and height reduction by integrated functions
- The best layout of fuses, thermistors and circuit areas
- Directly implement electronic parts


Developing

Long FPC Battery Busbar Module

Various size of FPC can be produced with a same equipment in Roll to Roll process

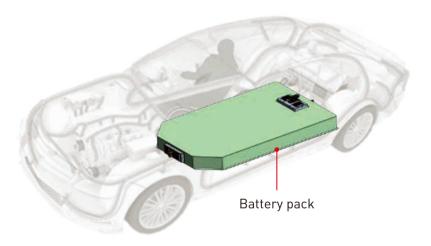

Available large capacity of battery

- Switching between series and parallel batteries

- Fast judgement of semiconductor fuse problems

- Need actions for charging of 800V BEV from existing 400V rapid charger which are mostly dominated
- Switching between series and parallel batteries allows charging of 800V BEV from existing 400V rapid chargers
- Reduce size by relay semiconductor
- Reduce size by high efficiency water cooling for large current

Semiconductor Relay Type of Battery Series-Parallel Switching Junction BOX


Target Specification

Max. voltage	Series 1000V Parallel 500V	
Max. current	(1) Rapid charging at 350kW: Series 500A continuous	
	(2) Rapid charging at 150kW: Parallel 300A continuous	
Usage temperature	-30 to 60degC	
Size	Semiconductor type 220×170×60mm	

Supply/distribute high voltage power

- It is necessary to develop products with high output charging specification to reduce charging time as one of the challenges for electric vehicles
- Downsize with a semiconductor relay(Decrease in 50% volume of Yazaki's product)

Voltage	Up to 800V	
Current	Continuous 200A	
Implement semiconductor FUSE function		
Internal voltage/ current sensor		

